

<u>Course</u>: Theory of Information and Signal Processing

LECTURER Julia Yamnenko, DrSc, Prof.

LANGUAGES OF EDUCATION: Ukrainian, Russian, English

<u>THE SUBJECT</u> of educational course: basics of information theory including calculation of information amount, entropy for independent, inter-depended,

equiprobable and non-equiprobable events, informational capacity of communication channel, influence of the noises; optimal coding, estimation of the error rate; group and cyclic codes; spectral transforms of continuous and discrete functions (Fourrier, Hartley, Walsh and other); convolution and correlation analysis; wavelet transform and new methods of spectral analysis; algorithms of data acquisition and compression.

THE GOAL of the course includes formation of following **<u>abilities</u>** of students:

Ability to calculate entropy for different forms of dependency between the elements,

- Ability to estimate amount of information during transmitting via communication channel, informational losses, influence of noises in the channel,
- Ability to form optimal codes for different ensembles of values, events or elements with own probabilities,
- Ability to use different methods of spectral analysis for the task of processes calculation, prediction, and compression

MAIN TASK OF EDUCATIONAL COURSE

In accordance to demands of educational-professional program, after the finishing of this course must demonstrate such learning outcomes:

Knowledge:

<u>Skills:</u>

- ✓ theoretical basis of information theory and signal processing methods
- ✓ basic algorithms of coding, decoding, error diagnostics and correction
- ✓ applying of error-correcting procedures
- ✓ estimation of redundancy for different codes
- ✓ applying of discrete and continuous spectral transforms
- ✓ using of wavelet transform to compress and analysis of the data
- ✓ correlation and auto-correlation analysis

Experience:

✓ application of the general principles of information theory and signal processing methods for choosing optimal coding algorithm including error-correction, calculation of convolutions, identification of parameters, compression and prediction.

COURSE DURATION: 6,5 credits, 195 hours in total, 72 hours of lections, 36 hours of practice, 6 hours of calculation and graphical work, 81 hours for own student's work.

<u>REQUIREMENTS TO STUDENTS</u>: knowledge in the field of mathematical analysis, calculation mathematics, basic programming skills.

Basic function													٦	
$h_{\nu}(v,x) = \cos\left[\frac{2\pi}{N}vx\right] + ctg[\alpha]\sin\left[\frac{2\pi}{N}vx\right].$									N=12		$\alpha = \frac{\pi}{2}$			
	L]			L -	-	1			-			-		
	$F_{Hr} =$	1	1	1	1	1	1	1	1	1	1	1	1	
Matrix of basic function		1	0.86	0.5	0	-0.5	-0.86	-1	-0.86	-0.5	0	0.5	0.86	
		1	0.5	-0.5	-1	-0.5	0.5	1	0.5	-0.5	-1	-0.5	0.5	
		1	0	-1	0	1	0	-1	0	1	0	-1	0	
		1	-0.5	-0.5	1	-0.5	-0.5	1	-0.5	-0.5	1	-0.5	-0.5	
		1	-0.86	0.5	0	-0.5	0.86	-1	0.86	-0.5	0	0.5	-0.86	
		1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	
		1	-0.86	0.5	0	-0.5	0.86	-1	0.86	-0.5	0	0.5	-0.86	
		1	-0.5	-0.5	1	-0.5	-0.5	1	-0.5	-0.5	1	-0.5	-0.5	
		1	0	-1	0	1	0	-1	0	1	0	-1	0	
		1	0.5	-0.5	-1	-0.5	0.5	1	0.5	-0.5	-1	-0.5	0.5	
		1	0.86	0.5	0	-0.5	-0.86	-1	-0.86	-0.5	0	0.5	0.86	