

Course: Theory of Information and Signal Processing

LECTURER Julia Yamnenko, DrSc, Prof.

LANGUAGES OF EDUCATION: Ukrainian, Russian, English

<u>THE SUBJECT</u> of educational course: basics of information theory including calculation of information amount, entropy for independent, inter-depended, equiprobable and non-equiprobable events, the informational capacity of a communication channel, the influence of the noises; optimal coding, estimation of the error rate; group and cyclic codes; spectral transforms of

Basic function										г		7
$h_{r}(v,x) = \cos\left[\frac{2\pi}{N}vx\right]$	+ctg[[α]si	$n \left[\frac{2\pi}{N} \right]$	τ - νx -				N=	:12	α	$=\frac{\pi}{2}$	
Matrix of basic function $F_{Hr} =$	1	1	1	1	1	1	1	1	1	1	1	1
	1	0.86	0.5	0	-0.5	-0.86	-1	-0.86	-0.5	0	0.5	0.86
	1	0.5	-0.5	-1	-0.5	0.5	1	0.5	-0.5	-1	-0.5	0.5
	1	0	-1	0	1	0	-1	0	1	0	-1	0
	1	-0.5	-0.5	1	-0.5	-0.5	1	-0.5	-0.5	1	-0.5	-0.5
	1	-0.86	0.5	0	-0.5	0.86	-1	0.86	-0.5	0	0.5	-0.86
	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
	1	-0.86	0.5	0	-0.5	0.86	-1	0.86	-0.5	0	0.5	-0.86
	1	-0.5	-0.5	1	-0.5	-0.5	1	-0.5	-0.5	1	-0.5	-0.5
	1	0	-1	0	1_1_	0	-1	0	1	0	-1	0
	1	0.5	-0.5	-1	-0.5	0.5	1	0.5	-0.5	-1	-0.5	0.5
	1	0.86	0.5	0	-0.5	-0.86	-1	-0.86	-0.5	0	0.5	0.86

continuous and discrete functions (Fourier, Hartley, Walsh and other); convolution and correlation analysis; wavelet transform and new methods of spectral analysis; algorithms of data acquisition and compression.

THE GOAL of the course includes the formation of the following **abilities** of students:

Ability to calculate entropy for different forms of dependency between the elements,

- ❖ Ability to estimate the amount of information during transmitting via the communication channel, informational losses, influence of noises in the channel,
- Ability to form optimal codes for different ensembles of values, events, or elements with own probabilities,
- Ability to use different methods of spectral analysis for the task of processes calculation, prediction, and compression

MAIN TASK OF EDUCATIONAL COURSE

Following the demands of an educational-professional program, after the finishing of this course must demonstrate such learning outcomes:

Knowledge: Skills:

- ✓ the theoretical basis of information theory and signal processing methods
- ✓ basic algorithms of coding, decoding, error diagnostics, and correction
- √ applying error-correcting procedures
- ✓ estimation of redundancy for different codes
- ✓ applying of discrete and continuous spectral transforms
- ✓ using of wavelet transform to compress and analysis of the data
- ✓ correlation and auto-correlation analysis

Experience:

✓ application of the general principles of information theory and signal processing methods for choosing optimal coding algorithm including error-correction, calculation of convolutions, identification of parameters, compression, and prediction.

COURSE DURATION: 6,5 credits, 195 hours in total, 72 hours of lections, 36 hours of practice, 6 hours of calculation and graphical work, 81 hours for own student's work.

<u>REQUIREMENTS TO STUDENTS</u>: knowledge in the field of mathematical analysis, calculation mathematics, basic programming skills.

